Mortality forecasts by age and cause of death: How to forecast both components coherently?

Marie-Pier Bergeron-Boucher

Danish Center for Demographic Research (DCem) Interdisciplinary Center on Population Dynamics (CPop) Southern Denmark University

Odense, 28 October 2020 Project financed by SCOR Foundation for Science

Bergeron-Boucher

CoDA forecasts

Odense, 28 October 2020 Project financed by

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction

Forecasts are generally produced so that the mortality risk is known by age-group. But, mortality forecasts for other components are useful to...

- know the risk for diverse factors (age, sex, cause of death, etc.);
- plan spending more efficiently (on research, capital investment, preventive measures or palliative care);
- have better specification of the morbidity process;
- capture mortality dynamics specific to an insured population.

But ...

= nar

Introduction

There is a consensus that forecasts by cause of death are subject to many limitations:

- Inherent pessimism (especially in linear models);
- 2 Can lead to unrealistic trends;
- Modifications to the International Classification of Diseases (ICD) create discontinuities over time;
- Inconsistent with an all-cause forecast;
- Trajectories of causes of death are considered to be independent, yet in reality they are interconnected.

э.

く 戸 と く ヨ と く ヨ と …

How can dependance between causes be considered?

- Coherent models applied to mortality by cause;
- Ompositional Data Analysis (CoDA).

A (10) A (10)

Instead of forecasting mortality rates, Oeppen (2008) suggested forecasting the death distributions (d_x) .

By using d_x , we forecast a redistribution of deaths across ages and/or causes, such that the decrease in proportion in one age-cause will lead to an increase in at least one other.

3

く 戸 と く ヨ と く ヨ と …

The CoDA model

$$clr(d_{t,x*c}\ominus \alpha_{x*c})=\beta_{x*c}\kappa_t+\epsilon_{t,x*c}$$

where

 $d_{t,x*c}$ are the life table deaths at time *t*, age *x* and cause *c clr* is the centered log-ratio transformation α_{x*c} is the age-and-cause-specific average β_{x*c} is the age-pattern of change κ_t is the time-index $\epsilon_{t,x*c}$ are the errors

< 回 > < 回 > < 回 >

How should the age and cause dimension be forecast?

Three options:

- Forecast the age-and-cause-of-death distribution (ACDD) simultaneously (Oeppen 2008);
- Forecast the cause-of-death distribution (CDD) at each age (top-down approach);
- Forecast the age-at-death distribution (ADD) within each cause.

э

A (10) A (10)

To test the accuracy of the three approaches and discuss how they address the limitations listed previously.

・ 同 ト ・ ヨ ト ・ ヨ ト

Approach 1 (A1): Forecast the age-and-cause-of-death distribution (ACDD) simultaneously

We compared 2 models:

One common time-trend for age and cause

$$A1_{1T}: \quad clr(d_{t,x*c} \ominus \alpha_{x*c}) = \beta_{x*c}\kappa_t + \epsilon_{t,x*c}, \quad (1)$$

Multiple time-trends, one for each cause

$$A1_{MT}: \qquad clr(d_{t,x} \ominus \alpha_x) = \sum_{c=1}^C \beta_x^c \kappa_t^c + \epsilon_{t,x}^c.$$
(2)

く得た くほた くほん

Approach 2 (A2): Forecast the CDD at each age

2 steps:

• Forecast mortality by age only, using a standard CoDA model

$$clr(d_{t,x} \ominus \alpha_x) = \beta_x \kappa_t + \epsilon_{t,x}.$$
 (3)

• Forecast the CDD specific at each age. Assuming that the CDD within each age-group are independent, the model can read as

$$A2_{Ind}: \qquad clr(d_{t,c}^x \ominus \alpha_c^x) = \beta_c^x \kappa_t^x + \epsilon_{t,c}^x.$$
(4)

э

A (10) A (10) A (10) A

Approach 2 (A2) with coherence between age-specific CDD

Assuming that the CDD within each age-group are not independent, and are driven by a similar trend, the second step of the approach is

$$A2_{Coh}: \qquad clr(d_{t,c}^x \ominus \alpha_c^x) = B_c K_t + \beta_c^x \kappa_t^x + \epsilon_{t,c}^x$$
(5)

3

Approach 3 (A3): Forecast the ADD within each cause

2 steps:

Forecast mortality by cause only, using a standard CoDA model:

$$clr(d_{t,c}\ominus\alpha_c)=\beta_c\kappa_t+\epsilon_{t,c}.$$
 (6)

Forecast the ADD specific to each cause. Assuming that the ADD within each cause are independent, the model can read as

$$A3_{Ind}: \qquad clr(d_{t,x}^c \ominus \alpha_x^c) = \beta_x^c \kappa_t^c + \epsilon_{t,x}^c.$$
(7)

A (10) A (10)

Approach 3 (A3) with coherence between cause-specific ADD

Assuming that the ADD are not independent between causes, the model is:

$$A3_{Coh}: \quad clr(d_{t,x}^c \ominus \alpha_x^c) = B_x K_t + \beta_x^c \kappa_t^c + \epsilon_{t,x}^c.$$
(8)

3

(日)

When forecasting the CDD, the time trends are assumed to follow (1) a random-walk with drift ($A3_{Ind,RW}$, $A3_{Coh,RW}$) and (2) a Holt-damped trend ($A3_{Ind,HD}$, $A3_{Coh,HD}$), so that the causes of death distribution eventually reach a constant.

-

くぼう くほう くほう

Data

Multiple-decrement life tables were calculated from the Human Mortality Database (2020) life tables and WHO causes-of-death data.

Countries: Japan (1995–2017), the Netherlands (1996–2017), Spain (1999-2017), Sweden (1997–2017), Switzerland (1995–2016) and the United States (1999–2017)

Sex: Females and males

Ages: 0-110 by 5-year age-groups.

Causes: Infectious and parasitic diseases; Cancers; Mental and behavioral disorders and diseases of the nervous system; Diseases of the circulatory system; Diseases of the respiratory system; Diseases of the digestive system; External causes; Others.

Parameters: Age-specific κ_t , Females

Bergeron-Boucher

CoDA forecasts

Parameters: Age-specific β_c , Japan, Females

Bergeron-Boucher

Parameters: Cause-specific κ_t , Females

Parameters: Cause-specific β_x , Japan, Females

Bergeron-Boucher

CoDA forecasts

Out-of-sample analysis, Females

	$A1_{1T}$	$A1_{MT}$	A2 _{Ind}	$A2_{Coh}$	A3 _{Ind,RW}	$A3_{Ind,HD}$	$A3_{Coh,RW}$	A3 _{Coh,HD}	
Causes-of-death distribution									
Japan	0.329	0.336	0.321	0.302	0.341	0.327	0.341	0.327	
Netherlands	0.390	0.386	0.376	0.380	0.389	0.417	0.389	0.417	
Sweden	0.276	0.199	0.292	0.325	0.288	0.231	0.288	0.231	
Switzerland	0.228	0.216	0.217	0.278	0.230	0.239	0.230	0.239	
Spain	0.179	0.197	0.180	0.241	0.189	0.188	0.189	0.188	
United States	0.196	0.209	0.205	0.204	0.203	0.135	0.203	0.135	
Mean	0.266	0.257	0.265	0.288	0.273	0.256	0.273	0.256	
		(2)	(3)			(1)		(1)	
	Age-at	-death d	istributic	n					
Japan	0.801	0.803	0.773	0.773	0.813	0.821	0.884	0.886	
Netherlands	0.886	0.837	0.837	0.837	0.821	0.820	1.019	1.017	
Sweden	0.868	0.808	0.819	0.819	0.831	0.826	1.177	1.174	
Switzerland	0.792	0.754	0.739	0.739	0.757	0.757	0.981	0.980	
Spain	0.627	0.596	0.632	0.632	0.599	0.597	0.804	0.802	
United States	0.427	0.434	0.391	0.391	0.430	0.429	0.524	0.522	
Mean	0.734	0.705	0.699	0.699	0.709	0.708	0.898	0.897	
		(2)	(1)	(1)		(3)			

Bergeron-Boucher

Odense, 28 October 2020 Project financed by

э

Out-of-sample analysis, Females

	$A1_{1T}$	$A1_{MT}$	A2 _{Ind}	$A2_{Coh}$	A3 _{Ind,RW}	A3 _{Ind,HD}	$A3_{Coh,RW}$	$A3_{Coh,HD}$		
Age-and-cause-of-death distribution										
Japan	3.787	3.803	3.832	3.774	3.814	3.817	3.929	3.982		
Netherlands	7.105	7.198	7.183	7.352	7.178	7.240	6.606	6.634		
Sweden	8.387	8.869	8.513	8.346	8.946	8.970	8.811	8.767		
Switzerland	7.891	7.857	7.765	7.331	7.916	7.937	7.476	7.492		
Spain	4.068	4.156	4.064	4.027	4.194	4.221	4.181	4.140		
United States	2.211	2.356	2.228	2.272	2.288	2.310	2.508	2.384		
Mean	5.575	5.697	5.598	5.517	5.723	5.749	5.585	5.566		
	(3)			(1)				(2)		
	Life ex	pectancy	/ at birth	1						
Japan	0.512	0.508	0.537	0.537	0.516	0.520	0.625	0.628		
Netherlands	0.294	0.227	0.207	0.207	0.193	0.194	0.313	0.313		
Sweden	0.476	0.154	0.206	0.206	0.255	0.252	0.329	0.329		
Switzerland	0.419	0.215	0.188	0.188	0.293	0.294	0.199	0.200		
Spain	0.308	0.240	0.287	0.287	0.236	0.235	0.304	0.307		
United States	0.597	0.541	0.381	0.381	0.526	0.449	0.525	0.465		
Mean	0.434	0.314	0.301	0.301	0.337	0.324	0.383	0.374		
		(2)	(1)	(1)		(3)				

Bergeron-Boucher

э

Out-of-sample analysis, Males

	$A1_{1T}$	$A1_{MT}$	A2 _{Ind}	$A2_{Coh}$	A3 _{Ind,RW}	A3 _{Ind,HD}	$A3_{Coh,RW}$	$A3_{Coh,HD}$	
Causes-of-death distribution									
Japan	0.292	0.293	0.280	0.241	0.287	0.246	0.287	0.246	
Netherlands	0.391	0.401	0.389	0.415	0.412	0.443	0.412	0.443	
Sweden	0.275	0.244	0.290	0.341	0.277	0.232	0.277	0.232	
Switzerland	0.179	0.173	0.198	0.318	0.241	0.217	0.241	0.217	
Spain	0.183	0.191	0.179	0.251	0.188	0.175	0.188	0.175	
United States	0.195	0.207	0.197	0.199	0.177	0.123	0.177	0.123	
Mean	0.252	0.252	0.256	0.294	0.264	0.239	0.264	0.239	
	(3)	(2)				(1)		(1)	
	Age-at	-death d	istributic	n					
Japan	0.680	0.686	0.670	0.670	0.689	0.687	0.878	0.871	
Netherlands	0.728	0.716	0.730	0.730	0.718	0.721	0.898	0.898	
Sweden	0.769	0.721	0.757	0.757	0.728	0.726	1.005	0.999	
Switzerland	0.741	0.711	0.792	0.792	0.703	0.705	0.948	0.950	
Spain	0.587	0.594	0.599	0.599	0.590	0.589	0.760	0.752	
United States	0.649	0.645	0.619	0.619	0.639	0.641	0.704	0.708	
Mean	0.692	0.679	0.694	0.694	0.678	0.678	0.866	0.863	
		(3)			(1)	(2)			

Bergeron-Boucher

Odense, 28 October 2020 Project financed by

э

Out-of-sample analysis, Males

	$A1_{1T}$	$A1_{MT}$	A2 _{Ind}	$A2_{Coh}$	A3 _{Ind,RW}	A3 _{Ind,HD}	$A3_{Coh,RW}$	$A3_{Coh,HD}$	
Age-and-cause-of-death distribution									
Japan	3.335	3.351	3.353	3.270	3.344	3.300	3.656	3.663	
Netherlands	5.398	5.548	5.548	5.148	5.601	5.667	5.354	5.397	
Sweden	7.058	7.343	7.014	7.013	7.435	7.397	7.195	7.064	
Switzerland	10.692	11.263	10.716	10.359	11.434	11.420	10.083	10.065	
Spain	4.276	4.444	4.278	3.971	4.454	4.443	4.232	4.211	
United States	2.504	2.517	2.522	2.486	2.512	2.566	2.673	2.576	
Mean	5.544	5.744	5.572	5.374	5.797	5.799	5.532	5.496	
				(1)			(3)	(2)	
	Life exp	ectancy a	t birth						
Japan	0.263	0.270	0.290	0.290	0.273	0.268	0.478	0.475	
Netherlands	0.381	0.225	0.372	0.372	0.209	0.211	0.380	0.378	
Sweden	0.717	0.311	0.098	0.098	0.400	0.384	0.186	0.174	
Switzerland	0.227	0.295	0.364	0.364	0.276	0.280	0.266	0.268	
Spain	0.312	0.252	0.311	0.311	0.236	0.240	0.341	0.331	
United States	0.859	0.833	0.709	0.709	0.771	0.739	0.711	0.691	
Mean	0.459	0.364	0.357	0.357	0.361	0.354	0.393	0.386	
			(2)	(2)	(3)	(1)			

Bergeron-Boucher

Odense, 28 October 2020 Project financed by

э

Forecast 20 years ahead, Females

Forecast 20 years ahead, Females

20	ro	Or		<u> </u>		\mathbf{O}		nor
)C	пu		U		D	U	uu	IEI
	_							

Odense, 28 October 2020 Project financed by

Forecast 20 years ahead, Males

Forecast 20 years ahead, Males

Odense, 28 October 2020 Project financed by

Discussion

- Inherent pessimism: No systematic pessimism;
- Can lead to unrealistic trends: Approach A3 allows one to control unlimited transfer towards one cause;
- Modifications to the International Classification of Diseases (ICD) create discontinuities over time;
- Inconsistent with an all-cause forecast: Approach A2 controls for this;
- Trajectories of causes of death are considered to be independent, yet in reality they are interconnected ...

э.

< 回 > < 回 > < 回 > -

How do they consider dependance between ages and causes?

- Approach A1: dependence between ages and causes is considered.
- Approach A2: dependence between age-groups and dependence between causes by age are considered. CDD between age-groups are considered independent, unless a coherent approach is used.
- Approach A3: dependence between causes and dependence between ages by cause are considered. ADD between causes are considered independent, unless a coherent approach is used.

3

く 戸 と く ヨ と く ヨ と …

Discussion

- Results are sensitive to the populations and time-period.
- With approach A2, the use of different models to forecast the all-cause ADD will lead to different accuracy.
- Which approach to use?
- Can approach A2 be modified to control for unlimited transfer towards one cause?
- Use of weight.

Conclusion

There are many ways to forecast mortality by age and cause in a coherent manners. The model selection remains, however, a complicated task.

3

Merci! Thank you!

mpbergeron@sdu.dk

Bergeron-Boucher

CoDA forecasts

Odense, 28 October 2020 Project financed by

æ